University of Amsterdam

?\\ Human-Computer Studies (HCS, formerly

; " SWI)
. I Kruislaan 419, 1098 VA Amsterdam
The Netherlands
pr l g Tel. (+31) 20 5256121

SWI-Prolog 5.6

Reference Manual
Updated for version 5.6.59, August 2008

Jan Wielemaker
wielemak@science.uva.nl
http://www.swi-prolog.org

SWI-Prolog is a Prolog implementation based on a subset of the WAM (Warren Ab-
stract Machine). SWI-Prolog was developed as an open Prolog environment, providing
a powerful and bi-directional interface to C in an era this was unknown to other Prolog
implementations. This environment is required to deal with XPCE, an object-oriented
GUI system developed at SWI. XPCE is used at SWI for the development of knowledge-
intensive graphical applications.

As SWI-Prolog became more popular, a large user-community provided requirements
that guided its development. Compatibility, portability, scalability, stability and provid-
ing a powerful development environment have been the most important requirements.
Edinburgh, Quintus, SICStus and the ISO-standard guide the development of the SWI-
Prolog primitives.

This document gives an overview of the features, system limits and built-in predicates.

Copyright (© 1990-2008, University of Amsterdam

Contents

1 Introduction 10
1.1 SWI-Prolog e e e e e 10
1.1.1 BooksaboutProlog 10

1.2 Status e e e e e e e e e e 11
1.3 Compliance to the ISO standard 11
1.4 Should you be using SWI-Prolog? 11
1.5 The XPCE GUI system for Prolog 12
1.6 Release Notes e e e 13
1.6.1 Version 1.8 Release Notes 13

1.6.2 Version 1.9Release Notes 14

1.6.3 Version2.0Release Notes 14

1.6.4 Version2.5Release Notes 14

1.6.5 Version2.6Release Notes 15

1.6.6 Version2.7Release Notes 15

1.6.7 Version2.8 Release Notes 15

1.6.8 Version29Release Notes 16

1.6.9 Version3.0Release Notes 16
1.6.10 Version 3.1 Release Notes 16
1.6.11 Version3.3Release Notes 16
1.6.12 Version3.4 Release Notes 17
1.6.13 Version4.0Release Notes 18
1.6.14 Version5.0Release Notes 18
1.6.15 Version5.1 Release Notes 18
1.6.16 Version5.2Release Notes 18
1.6.17 Version5.3Release Notes 19
1.6.18 Version5.4 Release Notes 19
1.6.19 Version5.5Release Notes 19
1.6.20 Version 5.6 Release Notes 19

1.7 Donate to the SWI-Prolog project 19
1.8 Acknowledgements 19
2 Overview 21
2.1 Getting started quickly 21
2.1.1 Starting SWI-Prolog 21

2.1.2 Executing a qUeTY v v v v i e e e e e e e e e e e e e e 22

2.2 Theuser’sinitialisationfile 22
2.3 Initialisation filesand goals Lo 23
2.4 Command-line options e e e e e e 23
2.5 GNUEmacslInterface e 26
2.6 OnlineHelp e 27

SWI-Prolog 5.6 Reference Manual

Contents 3

2.7 Command-line history e 28
2.8 Reuseof top-level bindings o 28
2.9 Overview of the Debugger o 29
2.10 Compilation oL e e e 32
2.10.1 During program development 32
2.10.2 Forrunningtheresult. 32

2.11 Environment Control (Prolog flags) 35
2.12 Anoverview of hook predicates, 43
2.13 Automatic loading of libraries Lo o oo 45
2.14 Garbage Collection e 46
2.15 Syntax NOtES o v o e e e e e e e 46
2.15.1 ISO Syntax Support e e e e 46

2.16 Infinite trees (cyclicterms) 50
2.17 Wide character support e e e e e e 50
2.17.1 Wide character encodings on streams 50

2.18 System limits oL e e e e 52
2.18.1 Limits on MEMOry areas v v v v v v v v v bt e 52
2.18.2 Other Limits o . o e e e 52
2.183 Reserved Names e 54

2.19 SWI-Prolog and 64-bit machines, 54
2.19.1 Supported platforms 54
2.19.2 Comparing 32- and 64-bits Prolog 55
2.19.3 Choosing between 32- and 64-bits Prolog 55

3 [Initialising and Managing a Prolog Project 57
3.1 The project source-files 57
3.1.1 File Names and Locations 57

3.1.2 ProjectSpecial Files, 58

3.1.3 International source fileso Lo 59

32 Usingmodules e 59
3.3 Thetest-edit-reloadcycle 60
3.3.1 Locating thingstoedit 60

3.3.2 Editing and incremental compilation 0L 61

3.4 Using the PceEmacs built-ineditor 61
34.1 ActivatingPceEmacs 61

3.4.2 Bluffing through PceEmacs 61

343 PrologMode 63

3.5 The Graphical Debugger 66
3.5.1 Invoking the window-based debugger 66

3.6 The Prolog Navigator i e 66
37 Crossreferencer oo e e e e e e e 67
3.8 Accessing the IDE from your program 69
39 SummaryoftheiDE 69

SWI-Prolog 5.6 Reference Manual

4 Built-in predicates 71
4.1 Notation of Predicate Descriptions 71
4.2 Character representation ot . e e e e e e e e e e e e 71
4.3 Loading Prologsourcefiles L 72

4.3.1 Conditional compilation and program transformation 78
4.3.2 Loading files, active code and threads 81
433 Quickloadfileso 82
4.4 Listing and Editor Interface o oo 82
45 Verify TypeofaTerm e 84
4.6 Comparison and Unificationof Terms 86
4.6.1 Standard Orderof Terms 86
4.6.2 Special unification and comparison predicates 87
4.7 Control Predicates e 88
4.8 Meta-Call Predicates e 90
4.9 1ISO compliant Exception handling 93
4.9.1 Debugging and eXceptions e e e e e 93
4.9.2 Theexceptionterm v vt it vt 94
4.9.3 Printing MmeSSages vt e e e e e e e e e e e e 94
4.10 Handling signals L 96
4.10.1 Notesonsignalhandling 98
4.11 The ‘block’ control-structure L e 98
4.12 DCG Grammarrules o e e e e e 99
413 Database e e e e e e e 100
4.13.1 Update view L e e e e 102
4.13.2 Indexing databases e 102
4.14 Declaring predicates properties e e e e e 103
4.15 Examining the program e e e 104
4.16 Inputandoutput L e e e 107
4.16.1 ISO Input and Output Streams v v v v v v v e .. 108
4.16.2 Edinburgh-styleI/O.o 113
4.16.3 Switching Between Edinburgh and ISOI/O 115
4.16.4 Write onto atoms, code-lists, etc.o 116
4.17 Statusof streams e e e 116
4.18 Primitive character /O L 118
4.19 Termreading and writing L L e 121
4.20 Analysing and Constructing Terms oo 126
4.20.1 Non-logical operations onterms« o oo v v v e 128
4.21 Analysing and Constructing Atoms e . 129
4.22 Character properties« v v vt i e e e e e e e e e e 131
4.22.1 CaseCONVEISION . . . v v v v v v vt e e e e e e e e e e e e 133
4.22.2 White space normalization Lo oL 133
4.22.3 Language specific comparisono e e 133
4.23 Representing text in Strings oL it e e e e e e 134
424 OPerators . . v v v v v e 135
4.25 Character CONVETSION v v v v v et e e e e e e e e e e e e 136
426 Arithmetic e e e e 137
4.26.1 Special purpose integer arithmetic 137

SWI-Prolog 5.6 Reference Manual

Contents 5
4.26.2 General purpose arithmetic 137

4.27 Adding Arithmetic Functions L L oo 144
4.28 Built-in listoperations e e e e 145
4.29 Finding all SolutionstoaGoal 146
4.30 Invoking Predicates on all Members of aList 147
431 Forall e 148
432 Formatted Write o e e e 148
4321 Writef . . . o oL e e 148
4322 Format e e e 150
4.32.3 Programming Format, 152

4.33 Terminal Control e 152
4.34 Operating System Interaction L o 153
4.34.1 Dealing withtimeanddate 156
4.34.2 Controlling the PLWIN.EXE console window 160

4.35 File System Interaction L e e 161
4.36 User Top-level Manipulation 164
4.37 Creating a Protocol of the User Interaction 165
4.38 Debugging and Tracing Programs 166
4.39 Obtaining Runtime Statistics 168
4.40 Executionprofiling 168
4.40.1 Profiling predicates e 170
4.40.2 Visualizing profilingdatao 170
4.40.3 Information gathering 171

441 Memory Management i it e e e e e e e e e e e e e 172
442 Windows DDE interface 173
4.42.1 DDEclientinterface oL 173
4422 DDEservermodeo 174

443 Miscellaneous e e e e e e e 175
S Using Modules 177
5.1 Why Using Modules? e 177
5.2 Name-based versus Predicate-based Modules 177
5.3 DefiningaModule e 178
5.4 Importing Predicates intoaModule 178
54.1 ReservedModules 179

5.5 Composing modules fromothermodules 180
5.6 Usingthe Module System 180
5.6.1 Object Oriented Programming 181

5.7 Meta-Predicatesin Modules Lo L 182
5.7.1 Definition and Context Module 182

5.7.2 Overruling Module Boundaries 183

5.8 DynamicModules e 183
5.9 Module Handling Predicates 183
5.10 Compatibility of the Module System 185
5.10.1 Emulating meta_predicate0 186

SWI-Prolog 5.6 Reference Manual

6 Special Variables and Coroutining

6.1

6.2
6.3

Attributed variables Lo
6.1.1 Special purpose predicates for attributes
Coroutining v v v e e e e e e e e e e e e
Global variables
6.3.1 Compatibility of SWI-Prolog Global Variables

7 CHR: Constraint Handling Rules

7.1
7.2

7.3

7.4

7.5
7.6

7.7
7.8

Introduction e e
Syntax and Semantics oL oL L e e e e
T2.1 Syntax e e e e
722 Semanticso i e e e e e e e e e e e e e e e
CHR in SWI-Prolog Programs
7.3.1 Embedding in Prolog Programs
7.3.2 Constraint declaration oL oL
733 Compilation e
Debugging e e
TAT Ports e e e
742 Tracing o o e e e
7.4.3 CHR Debugging Predicates
Examples e e
Backwards Compatibility
7.6.1 The OId SICStus CHR implemenation
7.6.2 The Old ECLiPSe CHR implemenation
Programming Tips and Tricks
Compiler Errors and Warnings L Lo
7.8.1 CHR Compiler Errors,

8 Multi-threaded applications

8.1
8.2
8.3

8.4
8.5

8.6
8.7

8.8

Creating and destroying Prologthreads
Monitoring threads L. e
Thread communication L e e
8.3.1 Message qUEUESt e e e e e e e e e
8.3.2 Signalling threads
8.3.3 Threads and dynamic predicateso
Thread synchronisation L e
Thread-support library(threadutil)
8.5.1 Debuggingthreads o
8.5.2 Profilingthreads
Unbounded thread creation e
Multi-threaded mixed C and Prolog applications
8.7.1 A Prolog thread for each native thread (one-to-one)
8.7.2 Pooling Prolog engines (many-to-many)
Multithreading and the XPCE graphics system

188
188
190
190
192
193

194
194
194
194
196
197
197
198
201
201
201
202
203
204
205
205
206
206
207
207

SWI-Prolog 5.6 Reference Manual

Contents 7
9 Foreign Language Interface 224
9.1 Overview of the Interface 224
9.2 Linking Foreign Modules 224
9.2.1 What linking is provided? oL 225

9.2.2 What kind of loading should I beusing? 225

9.3 Dynamic Linking of shared libraries 225
9.4 Using the library shlib for .DLL and .sofiles. 226
9.4.1 StaticLinking e 227

9.5 Interface Datatypes o i i e e e e e e 228
9.5.1 Type term_t: areference toaPrologterm 228

9.5.2 Other foreign interface types L 230

9.6 The ForeignInclude File 231
9.6.1 ArgumentPassingand Control 231

9.6.2 Atomsandfunctors 232

9.6.3 Analysing Terms via the Foreign Interface 234

9.64 ConstructingTerms Lo e 241

9.6.5 Unifyingdata e 244

9.6.6 BLOBS: Using atoms to store arbitrary binary data 249

9.6.7 Exchanging GMPnumbers 0. 251

9.6.8 Calling PrologfromC 253

9.6.9 DiscardingData 255
9.6.10 Foreign CodeandModules 256
9.6.11 Prolog exceptions in foreigncode, 257
9.6.12 Catching Signals (Software Interrupts) 259
9.6.13 Miscellaneouso 260
9.6.14 Errors and warningso a e e e e e e 262
9.6.15 Environment Control from Foreign Code 262
9.6.16 QueryingProlog 262
9.6.17 Registering Foreign Predicates 262
9.6.18 Foreign Code Hooks 266
9.6.19 Storing foreigndata. L L 267
9.6.20 Embedding SWI-Prolog in other applications 270

9.7 Linking embedded applicationsusingplld 273
9.7.1 Asimpleexample 275

9.8 The Prolog ‘home’ directory 277
9.9 Example of Using the Foreign Interface 277
9.10 Notes on Using ForeignCode 280
9.10.1 Memory Allocation e 280
9.10.2 Compatibility between Prolog versions 280
9.10.3 Debugging and profiling foreign code (valgrind) 280
9.10.4 Name ConflictsinCmodules 281
9.10.5 Compatibility of the Foreign Interface 281

SWI-Prolog 5.6 Reference Manual

10 Generating Runtime Applications 282
10.1 Limitations of gsave_program v v i i 284
10.2 Runtimes and Foreign Code 284
10.3 UsSing program reSOUICES . . . « v v v e v v v v e v e e e e et e e e e e e e 285

10.3.1 Predicates Definitionso 286
1032 The plrCc program o v v v v vttt e e e e 287
10.4 Finding Application files L o o 287
10.4.1 Passing a path to the application 288
10.5 The Runtime Environment 288
10.5.1 The Runtime Emulator, 288

A The SWI-Prolog library 290
A.1 aggregate.pl — Aggregation operators on backtrackable predicates 290
A.2 apply.pl — Apply predicatesonalist L. 293
A3 assoc: Association listso 293
A4 Dbroadcast: Broadcast and receive event notifications 294
A5 check: Elementary completenesschecks 0oL, 296
A.6 clp/clp_distinct: Weak arc consistent ‘all_distinct’ constraint 297

A6.1 Examplel e 298
A62 Example2 298
A.6.3 Example3 e e 298
A.7 clpfd.pl — Constraint Logic Programming over Finite Domains 299
A.8 clpgr: Constraint Logic Programming over Rationals and Reals 307
A.8.1 Solverpredicates e e 307
A.8.2 Syntax of the predicate arguments 308
A.8.3 Useofunification L 310
A.8.4 Non-linear constraints e 310
A.9 debug: Some reusable code to help debugging applications 310
A.10 gensym: Generate unique identifiers Lo 311
A.11 1ists: List Manipulation 312
A.11.1 SetManipulation e 313
A.12 nbset: Non-backtrackableset 314
A.13 www_browser: Activating your Web-browsero 315
A.14 option.pl —Option list processing v v v v v vt e 315
A.15 ordsets: Ordered Set Manipulation 317
A.16 pairs.pl — Operations on key-value lists 318
Al7 pio:Pure /O o . o e 319
A.17.1 pure_input.pl — Pure Input fromfiles 319
A.18 prologxref: Cross-reference data collection library 320
A.18.1 Extending thelibrary oL 321
A.19 readutil: Reading lines, streams and files 321
A.20 record: Access named fieldsinaterm oL 322
A.21 registry: Manipulating the Windows registry 324
A.22 simplex: Solve linear programming problems 325
A22.1 Example 1 e e 326
A222 Example2 e e 327
A223 Example3 e e e e e e 328

SWI-Prolog 5.6 Reference Manual

Contents 9

A.23 thread_pool.pl — Resource bounded thread management 329
A.24 ugraphs: Unweighted Graphs, 330
A.25 url.pl — Analysing and constructing URL oL, 333
B Hackers corner 336
B.1 Examining the Environment Stack 336
B.2 Interceptingthe Tracer e 338
B.3 Adding context to errors: prolog_exception_hook 339
B.4 Hooks using the exception predicate 340
B.5 Hooks for integrating librarieso 340
B.6 Hooks forloading files 341
B.7 ReadlineInteraction 342
C Compatibility with other Prolog dialects 343
C.1 Some considerations for writing portablecode 344
D Glossary of Terms 347
E SWI-Prolog License Conditions and Tools 353
E.1 The SWI-Prolog kernel and foreign libraries 353
E.1.1 The SWI-Prolog Prolog libraries 353

E.2 Contributing to the SWI-Prolog project 354
E.3 Software support to keep track of license conditions 354
E.4 Library predicates e e e 356
E4.1 aggregate e e 356
EA42 apply . . o e e e e e 356
E43 assoc e e e 356
E4.4 Dbroadcast i e e e 356
E45 check e e e e 357
E4.6 11Sts . . o i i e e e e e e 357
E47 option e e 357
EA4.8 ordsets. e e 357
E4.9 prologxref e e 358
E4.10 pairs i e e e e e 358
E4.1l pio o e e e e 358
E4.12 readutil o . e e e e 358
E4.13 record e 359
E4.14 registry . . . o o i i i i e e e e e e e 359
E4.15 ugraphs e e e e e e e 359
E4.16 url e e e e 359
EA4.17 www browsSer 0 i e e e e e e e e e e e e 360
E4.18 clp/clp.distinct @ i i i it e e e e 360
E4.19 clp/clpfd e e e 360
E4.20 clpdr . . .o . o e e e e e e 361
E421 clp/simplex . . . o i v i e e e e e e e e e 361
E4.22 thread pool i i e e e e 361

SWI-Prolog 5.6 Reference Manual

Introduction

1.1 SWI-Prolog

SWI-Prolog started back in 1986 with the requirement for a Prolog that could handle recursive inter-
action with the C-language: Prolog calling C and C calling Prolog recursively. Those days Prolog
systems were very aware of its environment and we needed such a system to support interactive
applications. Since then, SWI-Prolog’s development has been guided by requests from the user com-
munity, especially focussing on (in arbitrary order) interaction with the environment, scalability, (I/O)
performance, standard compliance, teaching and the program development environment.

SWI-Prolog is based on a very simple Prolog virtual machine called ZIP [,

] which defines only 7 instructions. Prolog can easily be compiled into this language
and the abstract machine code is easily decompiled back into Prolog. As it is also possible to wire a
standard 4-port debugger in the virtual machine there is no need for a distinction between compiled
and interpreted code. Besides simplifying the design of the Prolog system itself this approach has
advantages for program development: the compiler is simple and fast, the user does not have to
decide in advance whether debugging is required and the system only runs slightly slower when in
debug mode. The price we have to pay is some performance degradation (taking out the debugger
from the VM interpreter improves performance by about 20%) and somewhat additional memory
usage to help the decompiler and debugger.

SWI-Prolog extends the minimal set of instructions described in [] to improve
performance. While extending this set care has been taken to maintain the advantages of decompi-
lation and tracing of compiled code. The extensions include specialised instructions for unification,
predicate invocation, some frequently used built-in predicates, arithmetic, and control (; /2, | /2),
if-then (—>/2) and negation-by-failure (\+/1).

1.1.1 Books about Prolog

This manual does not describe the full syntax and semantics of Prolog, nor how one should write a pro-

gram in Prolog. These subjects have been described extensively in the literature. See [1,
[], and []. For more advanced Prolog material see
[]. Syntax and standard operator declarations confirm to the ‘Edinburgh standard’.
Most built in predicates are compatible with those described in [1. SWI-
Prolog also offers a number of primitive predicates compatible with Quintus Prolog' [] and
BIM Prolog? [1.

ISO compliant predicates are based on “Prolog: The Standard”, [], validated
using [].

'Quintus is a trademark of Quintus Computer Systems Inc., USA
2BIM is a trademark of BIM sa/nv., Belgium

SWI-Prolog 5.6 Reference Manual

1.2. STATUS 11

1.2 Status

This manual describes version 5.6 of SWI-Prolog. SWI-Prolog has been used now for many years.
The application range includes Prolog course material, meta-interpreters, simulation of parallel Pro-
log, learning systems, natural language processing, complex interactive systems, web-server and web-
server components. Although in our experience rather obvious and critical bugs can remain unnoticed
for a remarkable long period, we assume the basic Prolog system is fairly stable. Bugs can be expected
in infrequently used built-in predicates.

Some bugs are known to the author. They are described as footnotes in this manual.

1.3 Compliance to the ISO standard

SWI-Prolog 3.3.0 implements all predicates described in “Prolog: The Standard”
[I

Exceptions and warning are still weak. Some SWI-Prolog predicates silently fail on conditions
where the ISO specification requires an exception (functor /3 for example). Some predicates print
warnings rather than raising an exception. All predicates where exceptions may be caused due to a
correct program operating in an imperfect world (I/O, arithmetic, resource overflows) should behave
according to the ISO standard. In other words: SWI-Prolog should be able to execute any program
conforming to [] that does not rely on exceptions generated by errors in the
program.

1.4 Should you be using SWI-Prolog?

There are a number of reasons why you better choose a commercial Prolog system, or another aca-
demic product:

o SWI-Prolog is not supported
Although I usually fix bugs shortly after a bug report arrives, I cannot promise anything. Now
that the sources are provided, you can always dig into them yourself.

o Memory requirements and performance are your first concerns
A number of commercial compilers are more keen on memory and performance than SWI-
Prolog. I do not wish to sacrifice some of the nice features of the system, nor its portability to
compete on raw performance.

o You need features not offered by SWI-Prolog
In this case you may wish to give me suggestions for extensions. If you have great plans, please
contact me (you might have to implement them yourself however).

On the other hand, SWI-Prolog offers some nice facilities:

e Nice environment
This includes ‘Do What I Mean’, automatic completion of atom names, history mechanism and
a tracer that operates on single key-strokes. Interfaces to some standard editors are provided
(and can be extended), as well as a facility to maintain programs (see make/0).

SWI-Prolog 5.6 Reference Manual

12 CHAPTER 1. INTRODUCTION

o Very fast compiler
Even very large applications can be loaded in seconds on most machines. If this is not enough,
there is a Quick Load Format that is slightly more compact and loading is almost always 1/O
bound.

o Transparent compiled code
SWI-Prolog compiled code can be treated just as interpreted code: you can list it, trace it, etc.
This implies you do not have to decide beforehand whether a module should be loaded for
debugging or not. Also, performance is much better than the performance of most interpreters.

o Profiling
SWI-Prolog offers tools for performance analysis, which can be very useful to optimise pro-
grams. Unless you are very familiar with Prolog and Prolog performance considerations this
might be more helpful than a better compiler without these facilities.

o Flexibility
SWI-Prolog can easily be integrated with C, supporting non-determinism in Prolog calling C
as well as C calling Prolog (see section 9). It can also be embedded embedded in external
programs (see section 9.7). System predicates can be redefined locally to provide compatibility
with other Prolog systems.

o [ntegration with XPCE
SWI-Prolog offers a tight integration to the Object Oriented Package for User Interface De-
velopment, called XPCE []. XPCE allows you to implement
graphical user interfaces that are source-code compatible over Unix/X11, Win32 (Windows
95/98/ME and NT/2000/XP) and MacOS X (darwin).

1.5 The XPCE GUI system for Prolog

The XPCE GUI system for dynamically typed languages has been with SWI-Prolog for a long time.
It is developed by Anjo Anjewierden and Jan Wielemaker from the department of SWI, University of
Amsterdam. It aims at a high-productive development environment for graphical applications based
on Prolog.

Object oriented technology has proven to be a suitable model for implementing GUIs, which
typically deal with things Prolog is not very good at: event-driven control and global state. With
XPCE, we designed a system that has similar characteristics that make Prolog such a powerful tool:
dynamic typing, meta-programming and dynamic modification of the running system.

XPCE is an object-system written in the C-language. It provides for the implementation of meth-
ods in multiple languages. New XPCE classes may be defined from Prolog using a simple, natural
syntax. The body of the method is executed by Prolog itself, providing a natural interface between the
two systems. Below is a very simple class definition.

:— pce_begin_class (prolog_lister, frame,
"List Prolog predicates").

initialise(Self) :—>
"As the C++ constructor"::
send_super (Self, initialise, ’'Prolog Lister’),

SWI-Prolog 5.6 Reference Manual

1.6. RELEASE NOTES 13

send (Self, append, new (D, dialogqg)),
send (D, append,

text_item(predicate, message(Self, 1list, @argl))),
send (new (view), below, D).

list (Self, From:name) :-—>
"List predicates from specification"::
(catch(term_to_atom(Term, From), _, fail)
-> get(Self, member, view, V),
current_output (01d),
pce_open(V, write, Fd),
set_output (Fd),
listing(Term),
close (Fd),
set_output (01d)
; send (Self, report, error, ’'Syntax error’)

:— pce_end_class.

test :- send(new(prolog_lister), open).

Its 165 built-in classes deal with the meta-environment, data-representation and—of course—
graphics. The graphics classes concentrate on direct-manipulation of diagrammatic representations.

Availability. XPCE runs on most Unix/" platforms, Windows 95/98/ME, Windows NT/2000/XP
and MacOS X (using X11). In the past, versions for Quintus- and SICStus Prolog as well as some
Lisp dialects have existed. After discontinuing active Lisp development at SWI the Lisp versions
have died. Active development on the Quintus and SICStus versions has been stopped due to lack
of standardisation in the Prolog community. If adequate standards emerge we are happy to actively
support other Prolog implementations.

Info. further information is available fromhttp://www.swi-prolog.org/packages/xpce/
or by E-mail to info@www.swi-prolog.org.

1.6 Release Notes

Collected release-notes. This section only contains some highlights. Smaller changes to especially
older releases have been removed. For a complete log, see the file ChangeLog from the distribution.

1.6.1 Version 1.8 Release Notes

Version 1.8 offers a stack-shifter to provide dynamically expanding stacks on machines that do not
offer operating-system support for implementing dynamic stacks.

SWI-Prolog 5.6 Reference Manual

14 CHAPTER 1. INTRODUCTION

1.6.2 Version 1.9 Release Notes

Version 1.9 offers better portability including an MS-Windows 3.1 version. Changes to the Prolog
system include:

e Redefinition of system predicates
Redefinition of system predicates was allowed silently in older versions. Version 1.9 only allows
it if the new definition is headed by a :- redefine_system_predicate/1 directive.top-
level

o ‘Answer’ reuse
The top-level maintains a table of bindings returned by top-level goals and allows for reuse of
these bindings by prefixing the variables with the $ sign. See section 2.8.

e Better source code administration
Allows for proper updating of multifile predicates and finding the sources of individual clauses.

1.6.3 Version 2.0 Release Notes

New features offered:

o 32-bit Virtual Machine
Removes various limits and improves performance.

o [nline foreign functions
‘Simple’ foreign predicates no longer build a Prolog stack-frame, but are directly called from
the VM. Notably provides a speedup for the test predicates such as var/1, etc.

e Various compatibility improvements

o Stream based 1/0 library
All SWI-Prolog’s I/0 is now handled by the stream-package defined in the foreign include
file SWI-Stream.h. Physical I/O of Prolog streams may be redefined through the foreign
language interface, facilitating much simpler integration in window environments.

1.6.4 Version 2.5 Release Notes

Version 2.5 is an intermediate release on the path from 2.1 to 3.0. All changes are to the foreign-
language interface, both to user- and system-predicates implemented in the C-language. The aim
is twofold. First of all to make garbage-collection and stack-expansion (stack-shifts) possible while
foreign code is active without the C-programmer having to worry about locking and unlocking C-
variables pointing to Prolog terms. The new approach is closely compatible to the Quintus and SIC-
Stus Prolog foreign interface using the +term argument specification (see their respective manuals).
This allows for writing foreign interfaces that are easily portable over these three Prolog platforms.
Apart from various bug fixes listed in the ChangeLog file, these are the main changes since 2.1.0:

e [SO compatibility
Many ISO compatibility features have been added: open/ 4, arithmetic functions, syntax, etc.

SWI-Prolog 5.6 Reference Manual

1.6. RELEASE NOTES 15

e Win32
Many fixes for the Win32 (NT, ’95 and win32s) platforms. Notably many problems related to
pathnames and a problem in the garbage collector.

o Performance
Many changes to the clause indexing system: added hash-tables, lazy computation of the index
information, etc.

e Portable saved-states
The predicate gsave_program/[1,2] allows for the creating of machine independent
saved-states that load very quickly.

1.6.5 Version 2.6 Release Notes

Version 2.6 provides a stable implementation of the features added in the 2.5.x releases, but at the
same time implements a number of new features that may have impact on the system stability.

e 32-bit integer and double float arithmetic
The biggest change is the support for full 32-bit signed integers and raw machine-format double
precision floats. The internal data representation as well as the arithmetic instruction set and
interface to the arithmetic functions has been changed for this.

o Embedding for Win32 applications
The Win32 version has been reorganised. The Prolog kernel is now implemented as Win32 DLL
that may be embedded in C-applications. Two front ends are provided, one for window-based
operation and one to run as a Win32 console application.

o Creating stand-alone executables
Version 2.6.0 can create stand-alone executables by attaching the saved-state to the emulator.
See gsave_program/2.

1.6.6 Version 2.7 Release Notes

Version 2.7 reorganises the entire data-representation of the Prolog data itself. The aim is to remove
most of the assumption on the machine’s memory layout to improve portability in general and enable
embedding on systems where the memory layout may depend on invocation or on how the executable
is linked. The latter is notably a problem on the Win32 platforms. Porting to 64-bit architectures is
feasible now.

Furthermore, 2.7 lifts the limits on arity of predicates and number of variables in a clause consid-
erably and allow for further expansion at minimal cost.

1.6.7 Version 2.8 Release Notes

With version 2.8, we declare the data-representation changes of 2.7.x stable. Version 2.8 exploits the
changes of 2.7 to support 64-bit processors like the DEC Alpha. As of version 2.8.5, the representation
of recorded terms has changed, and terms on the heap are now represented in a compiled format.
SWI-Prolog no longer limits the use of malloc() or uses assumptions on the addresses returned by this
function.

SWI-Prolog 5.6 Reference Manual

16 CHAPTER 1. INTRODUCTION

1.6.8 Version 2.9 Release Notes

Version 2.9 is the next step towards version 3.0, improving ISO compliance and introducing ISO com-
pliant exception handling. New are catch/3, throw/1, abolish/1, write_term/[2, 3],
write_canonical/[1,2] and the C-functions PL_exception() and PL_throw(). The predicates
display/[1,2] and displayqg/[1, 2] have been moved to backcomp, so old code referring
to them will autoload them.

The interface to PL_open_query() has changed. The debug argument is replaced by a bitwise or’ed
flags argument. The values FALSE and TRUE have their familiar meaning, making old code using
these constants compatible. Non-zero values other than TRUE (1) will be interpreted different.

1.6.9 Version 3.0 Release Notes

Complete redesign of the saved-state mechanism, providing the possibility of ‘program resources’.
See resource/3, open_resource/3, and gsave_program/[1,2].

1.6.10 Version 3.1 Release Notes

Improvements on exception-handling. Allows relating software interrupts (signals) to exceptions,
handling signals in Prolog and C (see on_signal/3 and PL_signal()). Prolog stack overflows now
raise the resource_error exception and thus can be handled in Prolog using catch/ 3.

1.6.11 Version 3.3 Release Notes

Version 3.3 is a major release, changing many things internally and externally. The highlights are a
complete redesign of the high-level I/O system, which is now based on explicit streams rather then
current input/output. The old Edinburgh predicates (see/1, tell/1, etc.) are now defined on top
of this layer instead of the other way around. This fixes various internal problems and removes Prolog
limits on the number of streams.

Much progress has been made to improve ISO compliance: handling strings as lists of one-
character atoms is now supported (next to character codes as integers). Many more exceptions have
been added and printing of exceptions and messages is rationalised using Quintus and SICStus Pro-
log compatible print message/2, message_hook/3 and print message_lines/3. All
predicates described in [] are now implemented.

As of version 3.3, SWI-Prolog adheres the ISO logical update view for dynamic predicates. See
section 4.13.1 for details.

SWI-Prolog 3.3 includes garbage collection on atoms, removing the last serious memory leak
especially in text-manipulation applications. See section 9.6.2. In addition, both the user-level and
foreign interface supports atoms holding 0-bytes.

Finally, an alpha version of a multi-threaded SWI-Prolog for Linux is added. This version is still
much slower than the single-threaded version due to frequent access to ‘thread-local-data’ as well as
some too detailed mutex locks. The basic thread API is ready for serious use and testing however. See
section 8.

Incompatible changes

A number of incompatible changes result from this upgrade. They are all easily fixed however.

SWI-Prolog 5.6 Reference Manual

1.6. RELEASE NOTES 17

e !/0,call/l
The cut now behaves according to the ISO standard. This implies it works in compound goals
passed to call/1 and is local to the condition part of if-then-else as well as the argument of

\+/1.

e atom_chars/2
This predicate is now ISO compliant and thus generates a list of one-character atoms. The
behaviour of the old predicate is available in the —also ISO compliant— atom_codes/2
predicate. Safest repair is a replacement of all at om_chars into atom_codes. If you do not
want to change any source-code, you might want to use

user:goal_expansion (atom_chars (A,B), atom_ codes (A,B)).

o number_chars/2
Same applies for number_chars/2 and number_codes/2.

e feature/2, set_feature/2
These are replaced by the ISO compliant current prolog_flag/2 and
set_prolog_flag/2. The library backcomp provides definitions for these predicates, so
no source must be updated.

o Accessing command-line arguments
This used to be provided by the undocumented ’$argv’/1 and Quintus compatible library
unix/1. Now there is also documented current _prolog_flag(argy, Argv).

o dup _stream/2
Has been deleted. New stream-aliases can deal with most of the problems for which
dup_stream/2 was designed and dup/2 from the clib package can with most others.

e op/3
Operators are now local to modules. This implies any modification of the operator-table does
not influence other modules. This is consistent with the proposed ISO behaviour and a necessity
to have any usable handling of operators in a multi-threaded environment.

o set_prolog flag(character_escapes, Bool)
This Prolog flag is now an interface to changing attributes on the current source-module, effec-
tively making this flag module-local as well. This is required for consistent handling of sources
written with ISO (obligatory) character-escape sequences together with old Edinburgh code.

o current_stream/3 and stream_position
These predicates have been moved to quintus.

1.6.12 Version 3.4 Release Notes

The 3.4 release is a consolidation release. It consolidates the improvements and standard conformance
of the 3.3 releases. This version is closely compatible with the 3.3 version except for one important
change:

SWI-Prolog 5.6 Reference Manual

18 CHAPTER 1. INTRODUCTION

e Argument order in select/3
The list-processing predicate select /3 somehow got into a very early version of SWI-Prolog
with the wrong argument order. This has been fixed in 3.4.0. The correct order is select(?Elem,
7List, 7Rest).

As select/3 has no error conditions, runtime checking cannot be done. To simplify debug-
ging, the library module checkselect will print references to select/3 in your source
code and install a version of select that enters the debugger if select is called and the second
argument is not a list.

This library can be loaded explicitly or by calling check_old_select/0.

1.6.13 Version 4.0 Release Notes

As of version 4.0 the standard distribution of SWI-Prolog is bundled with a number of its popular
extension packages, among which the now open source XPCE GUI toolkit (see section 1.5). No
significant changes have been made to the basic SWI-Prolog engine.

Some useful tricks in the integrated environment:

o Register the GUI tracer
Using a call to guitracer/0, hooks are installed that replace the normal command-line
driven tracer with a graphical front-end.

e Register PceEmacs for editing files
From your initialisation file. you can load emacs/swi_prolog that cause edit /1 to use
the built-in PceEmacs editor.

1.6.14 Version 5.0 Release Notes

Version 5.0 marks a breakpoint in the philosophy, where SWI-Prolog moves from a dual
GPL/proprietary to a uniform LGPL (Lesser GNU Public Licence) schema, providing a widely usable
Free Source Prolog implementation.

On the technical site the development environment, consisting of source-level debugger, integrated
editor and various analysis and navigation tools progress steadily towards a mature set of tools.

Many portability issues have been improved, including a port to MacOS X (Darwin).

For details, please visit the new website at http://www.swi-prolog.org

1.6.15 Version 5.1 Release Notes

Version 5.1 is a beta-serie introducing portable multi-threading. See chapter 8. In addition it intro-
duces many new facilities to support server applications, such as the new r1imit library to limit
system resources and the possibility to set timeouts on input streams.

1.6.16 Version 5.2 Release Notes

Version 5.2 consolidates the 5.1.x beta series that introduced threading and many related modifications
to the kernel.

SWI-Prolog 5.6 Reference Manual

1.7. DONATE TO THE SWI-PROLOG PROJECT 19

1.6.17 Version 5.3 Release Notes

Version 5.3.x is a development series for adding coroutining, constraints, global variables, cyclic terms
(infinite trees) and other goodies to the kernel. The package JPL, providing a bidirectional Java/Prolog
interface is added to the common source-tree and common binary packages.

1.6.18 Version 5.4 Release Notes

Version 5.4 consolidates the 5.3.x beta series.

1.6.19 Version 5.5 Release Notes

Version 5.5.x provides support for wide characters with UTF-8 and UNICODE I/O (section 2.17.1).
On both 32 and 64-bit hardware Prolog integers are now at minimum 64-bit integers. If available,
SWI-Prolog arithmetic uses the GNU GMP library to provided unbounded integer arithmetic as well
as rational arithmetic. Adding GMP support is sponsored by Scientific Software and Systems Limited,
www.sss.co.nz. This version also incorporates clp(r) by Christian Holzbaur, brought to SWI-
Prolog by Tom Schrijvers and Leslie De Koninck (section A.8).

1.6.20 Version 5.6 Release Notes

Version 5.6 consolidates the 5.5.x beta series.

1.7 Donate to the SWI-Prolog project

If you are happy with SWI-Prolog, you care it to be around for much longer while it becomes faster,
more stable and with more features you should consider to donate to the SWI-Prolog foundation.
Please visit the page below.

http://www.swi-prolog.org/donate.html

1.8 Acknowledgements

Some small parts of the Prolog code of SWI-Prolog are modified versions of the corresponding Edin-
burgh C-Prolog code: grammar rule compilation and writef/2. Also some of the C-code originates
from C-Prolog: finding the path of the currently running executable and some of the code underlying
absolute_file_name/2. Ideas on programming style and techniques originate from C-Prolog
and Richard O’Keefe’s thief editor. An important source of inspiration are the programming tech-
niques introduced by Anjo Anjewierden in PCE version 1 and 2.

I also would like to thank those who had the fade of using the early versions of this system, sug-
gested extensions or reported bugs. Among them are Anjo Anjewierden, Huub Knops, Bob Wielinga,
Wouter Jansweijer, Luc Peerdeman, Eric Nombden, Frank van Harmelen, Bert Rengel.

Martin Jansche (jansche@novelll.gs.uni-heidelberg.de) has been so kind to reor-
ganise the sources for version 2.1.3 of this manual.

Horst von Brand has been so kind to fix many typos in the 2.7.14 manual. Thanks!

Bart Demoen and Tom Schrijvers have helped me adding coroutining, constraints, global variables
and support for cyclic terms to the kernel. Tom has provided the integer interval constraint solver, the
CHR compiler and some of the coroutining predicates.

SWI-Prolog 5.6 Reference Manual

20 CHAPTER 1. INTRODUCTION

Paul Singleton has integrated Fred Dushin’s Java-calls-Prolog side with his Prolog-calls-Java side
into the current bidirectional JPL interface package.

Richard O’Keefe is gratefully acknowledged for his efforts to educate beginners as well as valu-
able comments on proposed new developments.

Scientific Software and Systems Limited, www . sss.co.nz has sponsored the development if
the SSL library as well as unbounded integer and rational number arithmetic.

Leslie de Koninck has made clp(QR) available to SWI-Prolog.

Markus Triska has contributed to various libraries.

Paulo Moura’s great experience in maintaining Logtalk for many Prolog systems including SWI-
Prolog has helped in many places fixing compatibility issues. He also worked on the MacOS port and
fixed many typos in the 5.6.9 release of the documentation.

SWI-Prolog 5.6 Reference Manual

Overview

2.1 Getting started quickly

2.1.1 Starting SWI-Prolog
Starting SWI-Prolog on Unix

By default, SWI-Prolog is installed as ‘pl’, though some administrators call it ‘swipl’ or ‘swi-prolog’.
The command-line arguments of SWI-Prolog itself and its utility programs are documented using
standard Unix man pages. SWI-Prolog is normally operated as an interactive application simply by
starting the program:

machine% pl

Welcome to SWI-Prolog (Version 5.6.42)

Copyright (c) 1990-2007 University of Amsterdam.

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.
Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos (Word).

After starting Prolog, one normally loads a program into it using consult /1, which — for historical
reasons — may be abbreviated by putting the name of the program file between square brackets. The
following goal loads the file 1ikes.pl containing clauses for the predicates 1ikes/2:

?— [likes].
% likes compiled, 0.00 sec, 596 bytes.

Yes
?_

After this point, Unix and Windows users unite, so if you are using Unix please continue at sec-
tion 2.1.2.

Starting SWI-Prolog on Windows

After SWI-Prolog has been installed on a Windows system, the following important new things are
available to the user:

SWI-Prolog 5.6 Reference Manual

22 CHAPTER 2. OVERVIEW

e A folder (called directory in the remainder of this document) called p1 containing the executa-
bles, libraries, etc. of the system. No files are installed outside this directory.

e A program plwin.exe, providing a window for interaction with Prolog. The program
plcon.exe is a version of SWI-Prolog that runs in a DOS-box.

e The file-extension .pl is associated with the program plwin.exe. Opening a .p1 file will
cause plwin.exe to start, change directory to the directory in which the file-to-open resides
and load this file.

The normal way to start with the 1ikes.pl file mentioned in section 2.1.1 is by simply double-
clicking this file in the Windows explorer.

2.1.2 Executing a query

After loading a program, one can ask Prolog queries about the program. The query below asks Prolog
what food ‘sam’ likes. The system responds with X = (value) if it can prove the goal for a certain X.
The user can type the semi-colon (;)! if (s)he wants another solution, or RETURN if (s)he is satisfied,
after which Prolog will say Yes. If Prolog answers No, it indicates it cannot find any (more) answers
to the query. Finally, Prolog can answer using an error message to indicate the query or program
contains an error.

?— likes (sam, X).

X = dahl ;

X = tandoori ;
X = chips ;

No

2.2 The user’s initialisation file

After the necessary system initialisation the system consults (see consult /1) the user’s startup file.
The base-name of this file follows conventions of the operating system. On MS-Windows, it is the
file p1.1ini and on Unix systems .plrc. The file is searched using the file_search_path/2
clauses for user_profile. The table below shows the default value for this search-path. The
phrase (appdata) refers to the Windows CSIDL name for the folder. The actual name depends on the
Windows language. English versions typically use ApplicationData. See also win_folder/2

Unix | Windows
local | . .
home | ~ (appdata)/SWI-Prolog

'On most installations, single-character commands are executed without waiting for the RETURN key.

SWI-Prolog 5.6 Reference Manual

2.3. INITTALISATION FILES AND GOALS 23

After the first startup file is found it is loaded and Prolog stops looking for further startup files. The
name of the startup file can be changed with the ‘~f f£ile’ option. If File denotes an absolute path,
this file is loaded, otherwise the file is searched for using the same conventions as for the default
startup file. Finally, if file is none, no file is loaded.

See also the —s (script) and —F (system-wide initialisation) in section 2.4 and section 2.3.

2.3 Initialisation files and goals

Using command-line arguments (see section 2.4), SWI-Prolog can be forced to load files and execute
queries for initialisation purposes or non-interactive operation. The most commonly used options are
—-f fileor —s file to make Prolog load a file, —-g goal to define an initialisation goal and
-t goal to define the top-level goal. The following is a typical example for starting an application
directly from the command-line.

machine% pl -s load.pl -g go -t halt

It tells SWI-Prolog to load 1oad.pl, start the application using the entry-point go/0 and —instead
of entering the interactive top-level— exit after completing go/0. The —g may be used to suppress
all informational messages.

In MS-Windows, the same can be achieved using a short-cut with appropriately defined command-
line arguments. A typically seen alternative is to write a file run . p1 with content as illustrated below.
Double-clicking run . pl will start the application.

:— [load]. % load program
:— go. % run it
:— halt. % and exit

Section 2.10.2 discusses further scripting options and chapter 10 discusses the generation of runtime
executables. Runtime executables are a mean to deliver executables that do not require the Prolog
system.

2.4 Command-line options

The full set of command-line options is given below:

—help
When given as the only option, it summarises the most important options. Also available as —h
and —help.

—version
When given as the only option, it summarises the version and the architecture identifier. Also
available as —v.

—arch
When given as the only option, it prints the architecture identifier (see Prolog flag arch) and
exits. See also —dump-runtime-variables. Also available as —arch.

SWI-Prolog 5.6 Reference Manual

24 CHAPTER 2. OVERVIEW

—dump-runtime-variables
When given as the only option, it prints a sequence of variable settings that can be
used in shell-scripts to deal with Prolog parameters. This feature is also used by plld
(see section 9.7). Below is a typical example of using this feature. Also available as
—dump-runtime-variables.

eval ‘pl —-—-dump-runtime-variables®
cc —-ISPLBASE/include -LS$SPLBASE/runtime/S$SPLARCH

The option can be followed by =sh to dump in POSIX shell format (default) or cmd to dump
in MS-Windows cmd . exe compatible format.

—win_app
This option is available only in plwin.exe and is used for the start-menu item. If causes
plwin to start in the folder . . . \My Documents\Prolog or local equivalent thereof (see

win_folder/2). The Prolog subdirectory is created if it does not exist.

—quiet
Set the Prolog flag verbose to silent, suppressing informational and banner messages.
Also available as —q.

-Lsize[kmg]
Give local stack limit (default 16Mb on 32-bit and 32Mb on 64-bit hardware). Note that there
is no space between the size option and its argument. By default, the argument is interpreted
in Kbytes. Postfix the argument with m for Mbytes or g for Gbytes. The following example
specifies 64 Mbytes local stack.

% pl -L64m

A maximum is useful to stop buggy programs from claiming all memory resources. —LO sets
the limit to the highest possible value.” See section 2.18.

-Gsize[kmg]
Give global stack limit (4 Mbytes default). See —L for more details.

-Tsize[kmg]
Give trail stack limit (4 Mbytes default). This limit is relatively high because trail-stack over-
flows are not often caused by program bugs. See —L for more details.

-Asize[kmg]
Give argument stack limit (1 Mbytes default). The argument stack limits the maximum nesting
of terms that can be compiled and executed. SWI-Prolog does ‘last-argument optimisation’ to
avoid many deeply nested structure using this stack. Enlarging this limit is only necessary in
extreme cases. See —L for more details.

-cfile...
Compile files into an ‘intermediate code file’. See section 2.10.

20n 64-bit systems there is no relevant limit and —10 is interpreted as 1Gb. It is possible to ask for larger stack-sizes
such as -L.32g

SWI-Prolog 5.6 Reference Manual

2.4. COMMAND-LINE OPTIONS 25

-0 output
Used in combination with —c or —b to determine output file for compilation.

-0
Optimised compilation. See current _prolog_flag/2 flag opt imise for details.

—-nodebug
Disable debugging. See the current prolog.-flag/2 flag generate_debug_info for
details.

-S file
Use file as a script-file. The script file is loaded after the initialisation file specified with the
—f fileoption. Unlike -f file, using —s does not stop Prolog from loading the personal
initialisation file.

-f file
Use file as initialisation file instead of the default .plrc (Unix) or pl.ini (Windows).
‘—f none’ stops SWI-Prolog from searching for a startup file. This option can be used as an
alternative to —s f1ile that stops Prolog from loading the personal initialisation file. See also
section 2.2.

-F script
Selects a startup-script from the SWI-Prolog home directory. The script-file is named
(scripty . rc. The default script name is deduced from the executable, taking the leading
alphanumerical characters (letters, digits and underscore) from the program-name. -F none
stops looking for a script. Intended for simple management of slightly different versions.
One could for example write a script iso. rc and then select ISO compatibility mode using
pl —-F iso or make alink from iso-pl topl.

-g goal
Goal is executed just before entering the top level. Default is a predicate which prints the

welcome message. The welcome message can thus be suppressed by giving —~g true. goal
can be a complex term. In this case quotes are normally needed to protect it from being
expanded by the shell. A save way to run a goal non-interactively is here:

% pl <options> -g go,halt -t ’"halt(l)’

-t goal
Use goal as interactive top-level instead of the default goal prolog/0. goal can be a complex
term. If the top-level goal succeeds SWI-Prolog exits with status 0. If it fails the exit status is
1. If the toplevel raises an exception, this is printed as an uncaught error and the toplevel is
restarted. This flag also determines the goal started by break /0 and abort /0. If you want
to stop the user from entering interactive mode start the application with ‘~g goal’ and give
‘halt’ as top-level.

-tty
Unix only. Switches controlling the terminal for allowing single-character commands to the
tracer and get_single_char/1. By default manipulating the terminal is enabled unless
the system detects it is not connected to a terminal or it is running as a GNU-Emacs inferior
process. This flag is sometimes required for smooth interaction with other applications.

SWI-Prolog 5.6 Reference Manual

26 CHAPTER 2. OVERVIEW

—nosignals
Inhibit any signal handling by Prolog, a property that is sometimes desirable for embedded
applications. This option sets the flag signals to false. See section 9.6.20 for details.

—home=DIR
Use DIR as home directory. See section 9.8 for details.

-X bootfile
Boot from bootfile instead of the system’s default boot file. A bootfile is a file result-
ing from a Prolog compilation using the -b or —-c option or a program saved using
gsave_program/[1,2].

-p alias=pathl[:path2 ...]
Define a path alias for file_search_path. alias is the name of the alias, pathl ... is a list of
values for the alias. On Windows the list-separator is ;. On other systems it is :. A value
is either a term of the form alias(value) or pathname. The computed aliases are added to
file_search path/2 using asserta/1, so they precede predefined values for the alias.
See file_search_path/2 for details on using this file-location mechanism.

Stops scanning for more arguments, so you can pass arguments for your application after this
one. See current_prolog_flag/2 using the flag argv for obtaining the command-line
arguments.

The following options are for system maintenance. They are given for reference only.

-b initfile ... -c file ...
Boot compilation. initfile ... are compiled by the C-written bootstrap compiler, file ... by the
normal Prolog compiler. System maintenance only.

-d level
Set debug level to level. Only has effect if the system is compiled with the ~-DO_DEBUG flag.
System maintenance only.

2.5 GNU Emacs Interface

The default Prolog mode for GNU-Emacs can be activated by adding the following rules to your
Emacs initialisation file:

(setg auto-mode-alist
(append
" (("\\.pl" . prolog-mode))
auto-mode—-alist))
(setg prolog-program—-name "pl")
(setqg prolog-consult-string "[user].\n")
;If you want this. 1Indentation is either poor or I don’t use
;it as intended.
; (setg prolog-indent-width 8)

SWI-Prolog 5.6 Reference Manual

2.6. ONLINE HELP 27

Unfortunately the default Prolog mode of GNU-Emacs is not very good.
An alternative prolog.el filee for GNU-Emacs 20 is available from
http://www.freesoft.cz/ pdm/software/emacs/prolog-mode/ and for GNU-
Emacs 19 fromhttp://wl.858.telia.com/ u85810764/Prolog-mode/index.html

2.6 Online Help

Online help provides a fast lookup and browsing facility to this manual. The online manual can show
predicate definitions as well as entire sections of the manual.

The online help is displayed from the file MANUAL’. The file helpidx provides an index
into this file. 'MANUAL’ is created from the IZTgX sources with a modified version of dvitty,
using overstrike for printing bold text and underlining for rendering italic text. XPCE is shipped
with swi_help, presenting the information from the online help in a hypertext window. The Prolog
flag write_help_with_overstrike controls whether or not help/1 writes its output using
overstrike to realise bold and underlined output or not. If this Prolog flag is not set it is initialised by
the help library to t rue if the TERM variable equals xterm and false otherwise. If this default
does not satisfy you, add the following line to your personal startup file (see section 2.2):

:— set_prolog_flag(write_help_with_overstrike, true).

help
Equivalent to help (help/1).

help(+What)
Show specified part of the manual. What is one of:

iName;/(Arity) Give help on specified predicate

iName,, Give help on named predicate with any arity or C interface
function with that name
iSectiony, Display specified section. Section numbers are dash-

separated numbers: 2-3 refers to section 2.3 of the man-
ual. Section numbers are obtained using apropos/1.

Examples:
?- help (assert) . Give help on predicate assert
?- help(3-4). Display section 3.4 of the manual

?—- help (’PL.retry’) . Give help on interface function PL_retry()

See also apropos/1, and the SWI-Prolog home page at
http://www.swi-prolog.org, which provides a FAQ, an HTML version of man-
ual for online browsing and HTML and PDF versions for downloading.

apropos(+Pattern)
Display all predicates, functions and sections that have Patfern in their name or summary
description. Lowercase letters in Pattern also match a corresponding uppercase letter. Example:

SWI-Prolog 5.6 Reference Manual

28 CHAPTER 2. OVERVIEW

(I Repeat last query

'nr. Repeat query numbered (nr)
!'str. | Repeat last query starting with (str)
h. Show history of commands

'h. Show this list

Table 2.1: History commands

?— apropos (file) . Display predicates, functions and sections that have ‘file’
(or ‘File’, etc.) in their summary description.

explain(+7oExplain)
Give an explanation on the given ‘object’. The argument may be any Prolog data object. If the
argument is an atom, a term of the form Name/Arity or a term of the form Module:Name/Arity,
explain/1 describes the predicate as well as possible references to it. See also gxref /0.

explain(+ToExplain, -Explanation)
Unify Explanation with an explanation for ToExplain. Backtracking yields further explanations.

2.7 Command-line history

SWI-Prolog offers a query substitution mechanism called ‘history’. The availability of this feature
is controlled by set prolog_flag/2, using the history Prolog flag. By default, history is
available if the Prolog flag readline is false. To enable this feature, remembering the last 50
commands, put the following into your startup file (see section 2.2):

:— set_prolog_flag(history, 50).

The history system allows the user to compose new queries from those typed before and remembered
by the system. The available history commands are shown in table 2.1. History expansion is not done
if these sequences appear in quoted atoms or strings.

2.8 Reuse of top-level bindings

Bindings resulting from the successful execution of a top-level goal are asserted in a database. These
values may be reused in further top-level queries as $Var. Only the latest binding is available. Exam-
ple:

Note that variables may be set by executing =/2:

6 ?- X = statistics.
X = statistics

Yes

7 ?- S$SX.

28.00 seconds cpu time for 183,128 inferences

SWI-Prolog 5.6 Reference Manual

2.9. OVERVIEW OF THE DEBUGGER 29

1 ?- maplist(plus(l), "hello", X).
X = [105,102,109,109,112]

Yes

2 ?— format (" "s"n’, [$X]).

ifmmp

Yes
3 72—

Figure 2.1: Reusing top-level bindings

4,016 atoms, 1,904 functors, 2,042 predicates, 52 modules
55,915 byte codes; 11,239 external references

Limit Allocated In use
Heap : 624,820 Bytes
Local stack : 2,048,000 8,192 404 Bytes
Global stack : 4,096,000 16,384 968 Bytes
Trail stack : 4,096,000 8,192 432 Bytes
Yes
8 7-

2.9 Overview of the Debugger

SWI-Prolog has a 6-port tracer, extending the standard 4-port Byrd box model tracer [,

] with two additional ports. The optional unify port allows the user to inspect
the result after unification of the head. The exception port shows exceptions raised by throw/1 or
one of the built-in predicates. See section 4.9.

The standard ports are called call, exit, redo, fail and unify. The tracer is started by the
trace/0 command, when a spy point is reached and the system is in debugging mode (see spy/1
and debug/0) or when an exception is raised.

The interactive top-level goal trace/0 means “trace the next query”. The tracer shows
the port, displaying the port name, the current depth of the recursion and the goal. The goal
is printed using the Prolog predicate write_term/2. The style is defined by the Prolog flag
debugger_print_options and can be modified using this flag or using the w, p and d com-
mands of the tracer.

On leashed ports (set with the predicate 1leash/1, default are call, exit, redo and fail)
the user is prompted for an action. All actions are single character commands which are executed
without waiting for a return, unless the command-line option —t ty is active. Tracer options:

+ (Spy)
Set a spy point (see spy/ 1) on the current predicate.

SWI-Prolog 5.6 Reference Manual

30 CHAPTER 2. OVERVIEW

1 ?- visible(+all), leash(-exit).

Yes
2 ?- trace, min([3, 2], X).

Call: (3) min([3, 2], G235) ? creep
Unify: (3) min([3, 2], G235)
Call: (4) min([2], G244) ? creep
Unify: (4) min([2], 2)
Exit: (4) min([2], 2)
Call: (4) min(3, 2, G235) ? creep
Unify: (4) min(3, 2, G235)
Call: (5) 3 < 2 ? creep
Fail: (5) 3 < 2 ? creep
Redo: (4) min(3, 2, G235) ? creep
Exit: (4) min(3, 2, 2)
Exit: (3) min([3, 21, 2)

Yes

[trace] 3 ?-

Figure 2.2: Example trace

— (No spy)
Remove the spy point (see nospy /1) from the current predicate.

/ (Find)
Search for a port. After the °/’, the user can enter a line to specify the port to search for. This
line consists of a set of letters indicating the port type, followed by an optional term, that should
unify with the goal run by the port. If no term is specified it is taken as a variable, searching for
any port of the specified type. If an atom is given, any goal whose functor has a name equal to
that atom matches. Examples:

/£ Search for any fail port

/fe solve Search for a fail or exit port of any goal with name
solve

/c solve(a, -) Search for a call to solve/2 whose first argument

is a variable or the atom a
/a member (_, _) Search for any port on member /2. This is equiv-
alent to setting a spy point on member /2.

. (Repeat find)
Repeat the last find command (see /).

A (Alternatives)
Show all goals that have alternatives.

C (Context)

SWI-Prolog 5.6 Reference Manual

2.9. OVERVIEW OF THE DEBUGGER 31

Toggle ‘Show Context’. If on, the context module of the goal is displayed between square
brackets (see section 5). Defaultis of f.

L (Listing)
List the current predicate with 1isting/1.

a (Abort)
Abort Prolog execution (see abort /0).

b (Break)
Enter a Prolog break environment (see break/0).

c (Creep)
Continue execution, stop at next port. (Also return, space).

d (Display)
Set the max_depth(Depth) option of debugger_print_options, limiting the depth to
which terms are printed. See also the w and p options.

e (Exit)
Terminate Prolog (see halt/0).

f (Fail)
Force failure of the current goal.

g (Goals)
Show the list of parent goals (the execution stack). Note that due to tail recursion optimization
a number of parent goals might not exist any more.

h (Help)
Show available options (also ‘7).

i (Ignore)
Ignore the current goal, pretending it succeeded.

1 (Leap)
Continue execution, stop at next spy point.

n (No debug)
Continue execution in ‘no debug’ mode.

p (Print)
Set the Prolog flag debugger print_options to [quoted (true),
portray (true), max_depth(10), priority(699)]. This is the default.

r (Retry)
Undo all actions (except for database and i/o actions) back to the call port of the current goal
and resume execution at the call port.

s (Skip)
Continue execution, stop at the next port of this goal (thus skipping all calls to children of this
goal).

SWI-Prolog 5.6 Reference Manual

32 CHAPTER 2. OVERVIEW

u (Up)
Continue execution, stop at the next port of the parent goal (thus skipping this goal and all
calls to children of this goal). This option is useful to stop tracing a failure driven loop.

w (Write)
Set the Prolog flag debugger print_optionsto [quoted (true), attributes (write), priorit:
bypassing portray/1, etc.

The ideal 4 port Byrd box model [] as described in many Prolog books
[] is not visible in many Prolog implementations because code optimisa-
tion removes part of the choice- and exit-points. Backtrack points are not shown if either the goal
succeeded deterministically or its alternatives were removed using the cut. When running in debug
mode (debug/0) choice points are only destroyed when removed by the cut. In debug mode, last
call optimisation is switched off.’

Reference information to all predicates available for manipulating the debugger is in section 4.38.

2.10 Compilation

2.10.1 During program development

During program development, programs are normally loaded using consult /1, or the list abbre-
viation. It is common practice to organise a project as a collection of source files and a load-file, a
Prolog file containing only use_module/ [1, 2] or ensure_loaded/1 directives, possibly with
a definition of the entry-point of the program, the predicate that is normally used to start the program.
This file is often called 1oad.pl. If the entry-point is called go, a typical session starts as:

% pl

<banner>

1 ?- [load].
<compilation messages>

Yes
2 ?- go.
<program interaction>

When using Windows, the user may open load.pl from the Windows explorer, which will cause
plwin.exe tobe started in the directory holding 1oad.pl. Prolog loads 1cad. pl before entering
the top-level.

2.10.2 For running the result

There are various options if you want to make your program ready for real usage. The best choice
depends on whether the program is to be used only on machines holding the SWI-Prolog development
system, the size of the program and the operating system (Unix vs. Windows).

3This implies the system can run out of local stack in debug mode, while no problems arise when running in non-debug
mode.

SWI-Prolog 5.6 Reference Manual

2.10. COMPILATION 33

Using PrologScript

New in version 4.0.5 is the possibility to use a Prolog source file directly as a Unix script-file. The
same mechanism is useful to specify additional parameters for running a Prolog file on Windows.

If the first letter of a Prolog file is #, the first line is treated as comment.* To create a Prolog script,
make the first line start like this:

#!/path/to/pl (options) —s

Prolog recognises this starting sequence and causes the interpreter to receive the following
argument-list:

/path/to/pl (options) —s (script) —— (ScriptArguments)

Instead of —s, the user may use — £ to stop Prolog from looking for a personal initialisation file.
Here is a simple script doing expression evaluation:

#!/usr/bin/pl -g -t main -f

eval :-—
current_prolog_flag(argv, Argv),
append(_, [-—-l1Args], Argv),
concat_atom(Args, ' ', SingleArqg),
term_to_atom(Term, SingleArqg),
Val is Term,
format (" "'w'n’, [Vall).

main :-—
catch(eval, E, (print_message(error, E), fail)),
halt.

main :-—
halt (1) .

And here are two example runs:

% eval 1+2

w

% eval foo
ERROR: Arithmetic: ‘foo/0’ is not a function

o
°

“The #-sign can be the legal start of a normal Prolog clause. In the unlikely case this is required, leave the first line blank
or add a header-comment.

SWI-Prolog 5.6 Reference Manual

34 CHAPTER 2. OVERVIEW

The Windows version supports the # ! construct too, but here it serves a rather different role. The
Windows shell already allows the user to start Prolog source files directly through the Windows file-
type association. Windows however makes it rather complicated to provide additional parameters,
such as the required stack-size for an individual Prolog file. The # ! line provides for this, providing a
more flexible approach than changing the global defaults. The following starts Prolog with unlimited
stack-size on the given source file:

#!/usr/bin/pl -LO -TO0 -GO -s

Note the use of /usr/bin/pl, which specifies the interpreter. This argument is ignored in the
Windows version, but required to ensure best cross-platform compatibility.

Creating a shell-script

With the introduction of PrologScript (see section 2.10.2), using shell-scripts as explained in this
section has become redundant for most applications.

Especially on Unix systems and not-too-large applications, writing a shell-script that simply loads
your application and calls the entry-point is often a good choice. A skeleton for the script is given
below, followed by the Prolog code to obtain the program arguments.

#!/bin/sh

base=<absolute-path-to-source>

PL=pl
exec SPL —-f none —g "load_files ([’ S$base/locad’], [silent (true)])" \
-t go —— $x
go :-—
current_prolog_flag(argv, Arguments),
append (_SytemArgs, [--|Args], Arguments), !,
go (Args) .
go (Args) :-—

On Windows systems, similar behaviour can be achieved by creating a shortcut to Prolog, passing the
proper options or writing a . bat file.

Creating a saved-state

For larger programs, as well as for programs that are required to run on systems that do not have the
SWI-Prolog development system installed, creating a saved state is the best solution. A saved state is
created using gsave _program/ [1, 2] or using the linker plld(1). A saved state is a file containing
machine-independent intermediate code in a format dedicated for fast loading. Optionally, the emu-
lator may be integrated in the saved state, creating a single-file, but machine-dependent, executable.
This process is described in chapter 10.

SWI-Prolog 5.6 Reference Manual

2.11. ENVIRONMENT CONTROL (PROLOG FLAGS) 35

Compilation using the -c command-line option

This mechanism loads a series of Prolog source files and then creates a saved-state as
gsave_program/ 2 does. The command syntax is:

% pl [option ...] [-o output] -c file

The options argument are options to gsave_program/2 written in the format below. The option-
names and their values are described with gsave_program/2.

——option-name=option-value

For example, to create a stand-alone executable that starts by executing main/0 and for which
the source is loaded through 1oad.pl, use the command

[}

% pl ——goal=main --stand_alone=true -o myprog -c load.pl

This performs exactly the same as executing

[}

% pl

<banner>

?— [load].

?— gsave_program (myprog,
[goal (main),

stand_alone (true)

1.

?7— halt.

2.11 Environment Control (Prolog flags)

The predicates current _prolog_flag/2 and set_prolog_flag/2 allow the user to examine
and modify the execution environment. It provides access to whether optional features are available
on this version, operating system, foreign-code environment, command-line arguments, version, as
well as runtime flags to control the runtime behaviour of certain predicates to achieve compatibility
with other Prolog environments.

current_prolog_flag(?Key, -Value) [ISO]

The predicate current prolog_flag/2 defines an interface to installation features: op-
tions compiled in, version, home, etc. With both arguments unbound, it will generate all
defined Prolog flags. With the ‘Key’ instantiated it unifies the value of the Prolog flag. Flag
values are typed. Flags marked as bool can have the values t rue and false. Some Prolog
flags are not defined in all versions, which is normally indicated in the documentation below as
“if present and true”. A Boolean Prolog flag is true iff the Prolog flag is present and the Value
is the atom t rue. Tests for such flags should be written as below.

(current_prolog_flag(windows, true)
-> <Do MS-Windows things>
; <Do normal things>

)

SWI-Prolog 5.6 Reference Manual

36

CHAPTER 2. OVERVIEW

abort_with_exception (bool, changeable)
Determines how abort /0 is realised. See the description of abort /0 for details.

address_bits (integer)
Address-size of the hosting machine. Typically 32 or 64. Except for the maximum stack
limit, this has few implications to the user. See also the Prolog flag arch.

agc_margin (integer, changeable)
If this amount of atoms has been created since the last atom-garbage collection, perform
atom garbage collection at the first opportunity. Initial value is 10,000. May be changed.
A value of 0 (zero) disables atom garbage collection. See also PL _register_atom().

allow_variable_name_as_functor (bool, changeable)
If true (default is false), Functor (arg) isread as if it was written ’ Functor’ (arg).
Some applications use the Prolog read/1 predicate for reading an application defined
script language. In these cases, it is often difficult to explain to non-Prolog users of the
application that constants and functions can only start with a lowercase letter. Variables
can be turned into atoms starting with an uppercase atom by calling read_term/2
using the option variable_names and binding the variables to their name. Using this
feature, F(x) can be turned into valid syntax for such script languages. Suggested by
Robert van Engelen. SWI-Prolog specific.

argv (list)
List is a list of atoms representing the command-line arguments u